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Abstract

The quantum circuit model is not the only way to understand quantum comput-
ing. Measurement-based quantum computation (MBQC) offers an alternative to the
circuit-based model. In this report, we discuss tensor networks as a graphical frame-
work for understanding MBQC. Using the rules discussed, we focus on the 1D and 2D
cluster states of MBQC and how feed-forward control, depending on the measurement
outcomes, can generate some desired logical operations in the logical Hilbert space ir-
respective of measurement outcome. We then cover the 1D MBQC scheme by Stephen
et al. (2022) that extends the 1D cluster state to allow for universal quantum compu-
tation by increasing entanglement. We explain how feed-forward control is used in this
scheme and how it is universal. Finally, we extend this scheme to qudits and find that
for qutrits, computation is always universal, whereas for qubits, it is only universal
under certain restrictions.
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1 Introduction

Since Feynman first proposed the use of quantum computers to simulate quantum systems [1],
quantum computers have captured the minds of physicists and sci-fi enthusiasts alike. As the name
suggests, quantum computers utilise the power of quantum mechanics. Quantum computers can
leverage quantum laws, such as entanglement and superposition, to solve computational problems
currently difficult to solve on classical computers.

One of the earliest and most significant demonstrations of quantum computing’s potential came
in the 1990s, with the development of Peter Shor’s quantum algorithm for factoring numbers. This
algorithm has the potential to break RSA encryption, which relies on factoring large numbers. Due
to this imminent threat, researchers are developing encryption algorithms robust against quantum
computers.

The past decade has seen the emergence of a new era of quantum computing, called the Noisy
Intermediate-Scale Quantum (NISQ) era. NISQ quantum computers have a limited number of
qubits (50-100) and are subject to noise and errors that limit their computational power [1].
However, NISQ computers have already demonstrated their ability to solve problems that are
beyond the reach of classical computers.

Looking to the future, the potential impact of quantum computing is enormous. While some
remain sceptical about the feasibility of many-qubit quantum computation, many physicists believe
that the development of fault-tolerant quantum computers with thousands of qubits is just around
the corner. Such quantum computers could have a profound impact on topics such as developing
materials to solve the climate crisis, implementing molecular simulations to discovery novel drugs,
as well exploring the foundations of quantum mechanics.

1.1 What is Quantum Computation?

Like how classical computers are built upon bits (e.g. transistors which allows or prevents
current to pass), quantum computers are based upon qubits (e.g. spin up or spin down state of
electron). Classical bits are exclusively “on” or “off” (1 or 0). In contrast, qubits could be in
a superposition of two states. Mathematically, qubits can be described by a state-vector [¢)) in
the complex Hilbert space, represented as a linear combination of orthonormal vectors |0) and |1)
(analogous to the classical states 0, 1):

[¥) = al0) +b[1), (1)

where a,b € C under the restriction |a|? + [b|> = 1.

Based on these qubits, we can form a particular model of quantum computation, termed the
quantum circuit model [1], which is analogous to the circuit model for classical computers. In the
quantum circuit model, computation is implemented by initialising a set of qubits in some easy
to prepare state, like the |0) state; applying a series of so-called quantum logic gates to the set
of qubits (analogous to binary logical gates); then measuring all the qubits in some desired basis
(like the o* basis, which measures either |0) or |1)). We hope that the logic gates available to us
form a universal gate set. Such a gate set can generate any possible unitary operation we desire
(Miller, 2017).

In general, there are three ingredients to quantum computation: first, the quantum state of
some isolated system can be mathematically represented as a vector in the Hilbert Space, and we
can reliably prepare qubits in a state represented by some basis within the Hilbert space. Second,
we can evolve this system under some unitary U to map our initial configuration of qubits to some
output configuration. Third, we can measure the quantum state to obtain frequency statistics in
some basis within the Hilbert space [2].

Universal quantum computation is the ability to execute any quantum algorithm on a quantum
computer, regardless of its complexity or size. This is analogous to the concept of universal
computation in classical computers, where any computation can be performed given enough bits
and the ability to manipulate them. Essentially, if we can prepare n-qubits, where n is finite but
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arbitrary, and have access to experimental operations which allow us to evolve the system with
some n-qubit U, then we can run any quantum algorithm we want.

1.2 Measurement-Based Quantum Computation

Other than the quantum circuit model, are there other models of quantum computation which
satisfies these three requirements? Measurement based quantum computing (MBQC) is an equally
valid model for quantum computation. In MBQC, the computation is driven by applying single-
spin measurements on a carefully-constructed entangled many-body system, known as the resource
state. This flips the traditional quantum circuit model on its head, as input states are acted on
by unitaries in some logical Hilbert space arising from measurements.

While MBQC does not involve the use of entangling gates beyond the preparation of the
resource state, it relies heavily on the physical and analytical properties of the resource state itself
to determine which computations can be performed. MBQC is also called the “one-way” quantum
computer, since the resource state is consumed during computation via measurement to implement
logical operations on the quantum system. On the other hand, the quantum circuit model allows
for easy resetting of the circuit, and qubits are not depleted until the final measurements are taken
to obtain frequency statistics.

These differences underscore the unique nature of MBQC as a quantum computing paradigm.
By utilising on the entangled structure of resource states and employing single-spin measurements
instead of entangling gates, novel platforms for quantum computing may arise where MBQC
proves more advantageous [3]. MBQC offers an exciting new direction for theoretical insights and
experimental design in quantum computing.
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2 Tensor Network Notation

Tensor networks are an incredibly useful tool for studying quantum many-body systems in
both condensed matter physics and quantum information. They allow us to simplify complex
equations into easy-to-understand diagrams, making it easier to grasp the underlying mechanisms
of quantum circuits. The language of tensor networks is intuitive, providing both analytical and
numerical benefits, as well as a conceptual advantage in helping us understand complex systems.

In quantum many-body systems, tensor networks can simplify circuit details, allowing us to
perform contractions and simplifications with ease. Moreover, they provide a means for classically
simulating certain quantum systems, such as the 1D matrix product state tensor network. Addi-
tionally, tensor networks are strong conceptual tools in condensed matter physics. For example,
tensor networks can help us classify gapped zero-temperature phases in 1D [4].

In this section, we will introduce the basics of tensor networks and investigate some exam-
ples. In Section 2.1, we will cover the basic representations of tensors and tensor contractions. In
Subsection 2.1.1, we will describe how to represent the Bell pair, an important entangled state
in the context of quantum communication. In Subsection 2.1.2; we will prove that the quantum
teleportation protocol works using the tensor network manipulations we discussed. For our pur-
poses, tensor networks give us a way to manipulate and understand MBQC and easily visualize
the effects of measurements.

2.1 Basics of Tensor Network Notation

Tensors are mathematical objects that generalize vectors and matrices to arbitrary dimensions.
A tensor of rank n in d; X - - - X d,, dimensions has the expression T3, .. ;. € Cdix-xdn  For example,
a vector is a rank one tensor, and a matrix is a rank two tensor.

In tensor network notation, we represent tensors as shapes with legs sticking out, where each
leg represents an index of the tensor. For example, the tensor network representation of a single

qubit statevector |¢) is:
i
(2)

where i € {0,1}. For choice of the index i, the diagram will return the component (i|¢)). The
complex conjugate, (1|, of this statevector has the representation:

—P ®

which is simply a change in the direction the leg is sticking out of the triangle. Similarly, ¢ € {0,1}
such that for some choice of the index ¢, the diagram will return the component (1|i). Thus, the
direction the legs stick in tensor networks inform us whether the vector is a bra or ket.!

The contraction of the indices for some |¢)) and (¢| has the representation:

<4 0

and since there are no legs sticking out of the resulting shape, we know that it represents a scalar.
The contraction of the index i gives:

(Pilepa) , (5)

7

which is precisely the inner product (¢|¢).

n conventional tensor network notation, the ket vector has legs pointing to the left, and vice versa. We have
reversed the directions for all tensors to maintain consistency with the rest of the report.
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The matrix A;; will have the representation:

I A (6)

where the number of legs sticking out determine the tensor rank. On the other hand, the contrac-
tion of two matrices A, B by one index has the representation:

k J 1
—BFHal- (7)
The resultant shape has two legs sticking out on the remaining indices, meaning that it’s a

rank two tensor. This operation is equivalent to matrix multiplication, as the contraction of the
index j is equivalent to summation over the index j in the resulting tensor:

Z AijBji = (AB). (8)

The identity is easily represented in tensor network notation:

I = — )

where the above action is equivalent to the Kronecker delta d;;, as we force the index to be the
same across the leg indices. Similarly, the rank 3 identity has the representation:

k@ i _ (10)

where the above action is similar to Kronecker delta d;;;. From the above examples, we can extend
the representations of the identity and Kronecker delta to arbitrary rank.?

2.1.1 Bell Pair in Tensor Network Notation

The Bell pair, which is the simplest example of entanglement between two qubits, plays a
crucial role in quantum communication protocols such as quantum teleportation. The Bell pair
|Boo) is defined as follows:

fon) = (1)

Using tensor network notation, the Bell pair is represented as:

5 (12)

and by substituting the identity or Kronecker delta d;; to the left side of the diagram, we can
obtain the components equivalent to the Bell pair. Specifically, feeding in 0 in the top index
means we feed in 0 in the bottom index, and vice versa. However, since d;; = 1 for i = j, we need
to multiply the whole diagram by % to obtain the values equivalent to the Bell pair.

An equivalent representation of the Bell Pair is:
<+ =a(_ @

Ny

2See https://arxiv.org/abs/1912.10049 for a pedagogical exposition of tensor networks
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where the tensor denoted with the + is the statevector |+) = %\O) + %H) This identity can
be checked for by getting the inner product of Equation 13 with |00),|11), which are precisely
the components for (00]|5p0) and (11|Bgo). Since the constants in the diagram are inconsequential
to the resulting mechanism of the tensor network, we may ignore them. Thus, within the tensor
network notation, the above two diagrams are equivalent.

Importantly, the |4+) tensor can be freely attached to any leg, like Equation 13. We can
freely remove and add the |+) tensors to the legs. This property will prove very useful in our
understanding of MBQC.

2.1.2 Quantum Gates in Tensor Network Notation

Single qubit gates from the quantum circuit model can be represented as rank two tensors in
tensor network notation (see Equation 6). There are some additional identities which these gates
obey, as described below.

For Z-gate, since is a diagonal matrix, we know that it obeys:

I

which can be checked, as Z is non-zero only when the row and column indices are the same. Just
like the Kronecker delta, it “force” the connected legs to have the same indices. In general, the
above identity holds for all diagonal matrices which are rank 2 or more.
Additionally, for the X-gate, it obeys the identity below:
X} ‘

(15)
X}
which is easily checked by plugging in the indices.

For the control-Z gate, the quantum circuit notation is:

(16)

and the equivalent expression in tensor network notation, up to a multiplicative constant of %,
is:

(17)

which is possible because the Hadamard gate has the matrix representation:

vt )

where the Hadamard gate returns a negative value when both the first and second index are 1,
similar to the action of the control-Z gate.

Since C X192 = HyCZ 2Ho, we know that the Control-X gate has the representation in tensor
network notation:

(19)

—4
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and these representations of the C'Z and CX gates will be useful in manipulations of tensor
networks.

Using the above rules and representations of the gates, we can now consider the quantum
teleportation protocol in tensor network notation, which will demonstrate the power of tensor
network notation for simplifying circuits.

2.2 Example: Quantum Teleportation

\¢>1 H— 1

b A 1
|Boo) X7 )

Figure 1: The quantum teleportation protocol in quantum circuit notation. The first qubit repre-
sents Charlie’s qubit with statevector |¢). |Boo) is the Bell pair, where the second qubit belongs
to Alice, the third qubit to Bob.

Imagine that Charlie, Alice, and Bob each had a qubit on Earth. Suppose that Charlie and
Alice stayed on earth, and that Bob was sent on a spaceship far away. Suppose Charlie has a qubit
in some unknown state |¢)). He wants to send this qubit to Bob, who is far away on a spaceship.
However, Bob does not have the gates required to generate |¢), so Charlie and Alice must find
another way to send the qubit to Bob. What could Charlie and Alice do?

The preparation procedure to allow this is called the quantum teleportation protocol. To do
this, Alice and Bob began by each obtaining a qubit from a Bell pair. Thus, their qubits will
be entangled. When Bob goes on his spaceship, Alice and Charlie performs a set of gates on
their qubits. Next, Charlie and Alice each measure their qubit in the 0% basis. Depending on
the outcome of their measurement, they get one of four possible classical results: 00, 01, 10, or
11. Finally, Alice and Charlie sends their two classical measurement outcomes to Bob, who then
performs a set of gates on his qubit depending on the results. These gates “fix” the state of Bob’s
qubit so that it becomes [)).

In summary, the quantum teleportation protocol allows Charlie to send his qubit |¢) to Bob by
using shared entanglement and classical communication. Charlie is able to “teleport” the quantum
state of his qubit to Bob’s qubit. As Nielsen and Chuang note, utilising entanglement in quantum
systems opens up “a new world of possibilities unimaginable with classical information” (p. 26). A
general proof that the protocol works is somewhat tedious. However, in tensor network notation,
the proof is simple.

The equivalent teleportation circuit in tensor network notation is:

c 0>)
Sy )
B

where the labels C, A, B represent Charlie, Alice, and Bob’s qubit respectively.
In tensor network notation, a measurement is represented as a projection onto some basis (such
as the computational basis 0%). Specifically, when measuring the first qubit in the state |0), we




Universal Resource States for 1D Measurement-Based Quantum Computation Jeb Song

assign ¢ = 0, while ¢ = 1 when measuring the first qubit in the state |1). The same convention is
used for index j from the second qubit. Informed by the measurement outcomes i, j, Bob performs
a correction operation X7Z¢ which returns the state |)) he is interested in. The operators X*
and X7 are determined by the measurement outcome, and they account for all possible outcomes
in the protocol.

Under tensor network manipulations, the tensor network from Equation 20 becomes (see Ap-
pendix 9.1 for explicit tensor network manipulation):

(21)
We know that: o _ _ o _ o
Z'XIHZVHZ' = ' XX HHZ = 27" = 1. (22)
Thus, we can establish the equivalence between the two diagrams:
= (23)

These manipulations graphically demonstrates how the whole teleportation circuit is equivalent
to moving the statevector |¢) from Charlie to Bob. Using a few tensor network manipulations, we
have proved that the quantum teleportation protocol works.
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3 MBQC

The fundamental ingredients of MBQC involve the resource state, a many-body entangled
system of qubits; measurements which act as logical unitaries on the circuit; and feed-forward
control of measurements. Such control ensures that the desired logical unitary is implemented
independent of measurement outcome.

In this section, we highlight two basis schemes for MBQC. Standard texts view MBQC through
the lens of stabilizer formalism or graph theory. This section will cover MBQC in terms of tensor
networks, which is easier to appreciate. In Section 3.1, we consider the 1D cluster state. We
will show how the 1D cluster state can simulate any unitary acting on one qubit, considering the
ingredients of MBQC. In Section 3.2, we consider the 2D cluster state. Based on our investigation
of the 1D cluster state and some new operations, we will demonstrate that the 2D cluster state
allows for universal quantum computation.

3.1 1D Cluster State

As described in [2], the 1D cluster state |¢)1py) of n qubits is formed by initialising n qubits
in some ‘scratch’ state |0)®" then applying Hadamard gates to each qubit, given as H®". This
will give us the state |—|—>®". Then, we implement C'Z gates on neighbouring qubits.

Thus, the cluster state is of the form:

[Y1Dn) = (1:[ CZi,i+1> |+)®", (24)

For n = 5, the tensor network representation of the 1-D cluster state |¢1ps) is:

7] 7] [77] [77]
From Equation 13, we can remove the |+) tensors to get the equivalent representation:
(26)
H] (5] 5] (H]

To simulate any unitary on two qubits, we will need to prepare n = 5 qubits. This is based on
the protocol from [5]. For the protocol, the first qubit (from the left) is measured in the o*-basis
with measurement outcomes |0),|1). The second, third, and fourth qubits are measured in the
XY -plane. Explicitly, these qubits are measured in the basis {|0?),[1%)} determined by some angle
0, where:

‘00> _ ei(9/2)Z|_’_>’ ‘10> _ ei(9/2)Z|_>’ (27)

and the fifth qubit is measured in the o*-basis with an unknown outcome, z € {0,1}.

In quantum mechanics, we know that our measurements are probabilistic. If in general we
measure some quantum state in |0) with probability p, we know that we will measure |1) with
probability 1 — p. Likewise for the basis {|0%),[1%)}. In the subsequent section, we consider
the ideal case, where the measurement outcome for the first qubit is |0), and the measurement
outcome for the subsequent three qubits is [0%7). This choice helps simplify our tensor network
manipulations.

10
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3.1.1 1Ideal Measurement

The tensor network diagram for the whole protocol is:

A A A
ﬁk ﬁl (28)
] \H] ] \H]

where U; = e'%3/2)2 - Explicitly, U; is some rotation along the Z-axis of the Bloch sphere with
the matrix representation:

e*i@j /2 0
Uj = [ 0 eiaj/z} (29)
The above diagram from Equation 28 is equivalent to the inner product:
(00710%20% 2|41 ps) . (30)

Simplifying the diagram by removing the |+) tensors (using Equation 13) and moving down
the diagonal Uj;, we have the diagram:

We know that:

Hei0/2)7 [16i(02/2)2 [ (61 /22 [ _ oi(63/2)X i(62/2) 7 i(01/2)X (32)

which is precisely the Euler angle decomposition of single qubit unitaries, which implies that we
can simulate any one-qubit unitary U in the ideal case where we measure |0), |0?) for first qubit
and the subsequent three qubits respectively.

Thus, the above diagram simplifies to:

3 2> (33)

(=|U0) (34)

which is the inner product:

where U = ¢i(03/2)X i(02/2)Z ¢i(01/2)X  From these tensor network manipulations, we conclude that
(00910920% 2|4p1 p5) is equivalent to (z|U|0).

We can also establish a relation between the physical space (number of physical qubits) of
the circuit from Equation 28 with the logical time (number of logical operations) of the circuit
from Equation 33. Measuring the second, third, and fourth physical qubits corresponds to logical
rotations of the logical qubit.

3.1.2 Feed-Forward Control of 1D Cluster State

We now consider the general case where the measurement outcome is not necessarily |0) and
|0%) due to the random measurement outcomes. We will show that even in the case of different
measurement outcomes, we can still deterministically change subsequent measurements to generate
the logical U we desire.

11
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As an example, if we measure |1) on the first qubit, our diagram will look like:

IR

moving the X tensor over the H operator, we will get the diagram:

A\
/A A

] ] ]

(36)

=

which we represent as:

A A A
ﬁol 37)
m@——E——E——E

[EES|

where Uy = ei(01/247/2)Z  Thys, the measurement outcome of the first qubit will change the logical
unitary implemented by the measurement on the second qubit. If we desire to implement some
rotation 6 on the second qubit, measuring |1) for the first qubit means that we should instead
measure the rotation 8 — 7 for the second qubit. Under such measurement controls, the diagram
from Equation 35 is equivalent to the ideal case in Equation 28.

As another example, we consider the case where we measure |19) for the second qubit after
measuring the first qubit as |0). In this case, the diagram will look like:

A\ A
(38)
ﬁzk
Fi Fi Fi Fi

since we measure |191) = (01/2)Z| ) = ¢i01/2Z 7|1} = U, Z|+) on the second qubit. Imple-
menting tensor network manipulations we have described (see Appendix 9.2), the above diagram

simplifies to:
%\ ; z% (39)
t.—.—|

12
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where Uy = e~"2/2)Z and U} = ¢/0s/247/2)Z,

Thus, If we desire to implement rotations &,7 on the second and third qubit respectively,
measuring |191) for the second qubit means that we should instead measure the rotations —¢ and
1 — m for the third and fourth qubits respectively. Under such measurement controls, the diagram
from Equation 39 is equivalent to the ideal case in Equation 28.

The logic for the feed-forward controls for the third and fourth qubit is the same. Thus, we
have shown that no matter the random outcomes of measurement, we can reliably implement the
desired logical U from the ideal case by controlling subsequent measurements (either by taking
the negative angle of rotation, or measuring with phase —m) based on previous measurements.
Experimentally, it is easy to keep track of the changes required for subsequent measurements.
Even though the measurements are random, we can reliably generate our desired outcome within
MBQC.

3.2 2D Cluster State

Though the 1D cluster state allows us to generator arbitrary logical rotations around one logical
qubit, this won’t allow us to perform universal quantum computation, as we cannot scale up the
quantity of logical qubits.

The 2D cluster state is the generalisation of the 1D cluster state to 2D. Implementing the 2D
cluster state requires a physical 2D array, with entanglement between qubits. Theoretically, the
2D cluster state can implement any multi-qubit unitary on any number of qubits we want desire.
Thus, we can perform universal quantum computation on the 2D cluster state.

Just like in the 1D case, we prepare an array of n X m qubits of n qubits length and m qubits
width in the state |+>®nxm. We then implement the C'Z gate between horizontally or vertically
neighbouring qubits [2]. In tensor network notation, a 3 x 3 2D cluster state looks like:

(40)

and using the rule for removing the |+) tensor from Equation 13, we know that this is equivalent
to:

In addition to the measurements available to us in the 1D cluster state, there are two important
operations for the 2D Cluster state described below.

13
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3.2.1 o*-measurement

We again consider the 3 x 3 2D cluster state. If we measure the qubit in the middle in the ¢*
basis and get the |0). The tensor network diagram for this operation looks like:

(42)

Thus, measuring in the o® basis is equivalent to removing the qubit from the cluster state. o*
allows us to carve out the geometries of the cluster state. If we instead measure |1), we will have
to correct for the Z tensor in the qubits adjacent to the measured qubit.

3.2.2 o"-measurement

Consider the 3 x 4 2D cluster state. We measure certain qubits in the o* basis to carve out
the array:

(43)

in which all measurements are |0) (though we could get the same outcome by implementing feed-
foward measurement control). Suppose we measure both qubits in the middle chain in the o®
basis and obtain |+). Then, the tensor network simplifies to:

(44)

Therefore, if we measure these two qubits in the middle chain in ¢” basis, it is equivalent to
implementing a CZ gate between the qubits that are adjacent to the connection from each chain.
If we measure the qubits in the |—) state, we must correct for the Z operator on the adjacent
qubits. This operation is useful because it allows us to implement a logical CZ gate between logical
qubits.



Universal Resource States for 1D Measurement-Based Quantum Computation Jeb Song

Thus, by incorporating ¢* and ¢ operations, we can carve out 1D chains of qubits with CZ
entanglement between them. Using this, we can implement any single qubit logical operation U
on the 1D chain (as detailed in Section 3.1) and CZ gates between logical qubits. By scaling the
number of qubits along the length and width of the 2D cluster state and carving out the array’s
geometry based on the multi-qubit unitary’s decomposition, we can implement any quantum
computation within its logical Hilbert space.? In other words, we can implement any multi-qubit
unitary operation on any number of qubits by using the 2D cluster state. Therefore, the 2D cluster
state is considered a universal resource state for quantum computation.

We can also relate its physical dimensions to logical space and time dimension to understand
how the 2D cluster state’s role enables universal quantum computation. Specifically, we can
choose one physical space dimension to represent logical space and the other to represent logical
time. By increasing the number of physical qubits along the physical dimension corresponding
to logical space, we can simulate any number of logical qubits by carving out 1D lines along
that dimension (with connections between lines to implement entanglement). Furthermore, by
evolving the states of these logical qubits through single-spin measurements along the dimension
that represents logical time, we can implement any desired unitary operation by scaling up the
corresponding physical dimension. This intuitive representation of the 2D cluster state allows us
to see why it is a universal resource state for quantum computation. Through tuning the logical
space and time dimensions, we can perform universal quantum computation with a high degree of
control and flexibility.

In MBQC, discovering such universal resource states can be challenging, as it often relies on
specific properties of the state in question. In the subsequent sections, we will explore a particular
1-D MBQC scheme that serves as a universal resource state under certain conditions. We will also
attempt to generalize this scheme from the qubit case to the qudit case.

3See the image from https://commons.wikimedia.org/wiki/File:Notation-as-it-relates-to-a-one-way-q
uantum-computation-3-copyright-2001-by-the-APS.png for a pictorial representation of this correspondence

15
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4 Universal MBQC paper by Stephen et al. (2022)

MBQC relies on the entanglement between different regions of a quantum state to perform
operations. In the case of the 1D cluster state, which is the most commonly used resource state
for MBQC, the entanglement is relatively weak, consisting of only one layer of Controlled-Z gates.
As a result, only one qubit of information can be transmitted through physical qubits. If we
controllably increase entanglement, we might be able to do more operations and implement more
useful logical computations in the 1D. This is the central motivation behind Stephen et al.’s
research.

In a recent paper by Stephen et al. (2022) [6], a new universal resource state was introduced
for 1D MBQC. The 1D scheme for MBQC provides an universal resource state, depending on
certain parameters, that supports multiple logical qubits. By choice of the 1D setup, this scheme
offers practical advantages for universal MBQC by eliminating the need for 2D geometries, which
simplifies the requirements for potential implementation in experimental platforms. Moreover, the
scheme only requires simple and uniform controls, making it particularly relevant to trapped ions,
which have high gate and measurement fidelities, long coherence times, and are typically restricted
to 1D geometry.

In Section 4.1, we will discuss the resource state used in the 1D MBQC scheme proposed by
[6]. In Section 4.2, we will explore the effect of measurement in the ideal case and demonstrate the
dual-unitary property of the circuit. In Section 4.3, we will delve into feedforward measurement
controls based on different measurement outcomes, and how this affects the logical outcome of the
inner product. Finally, in Section Finally, in Section 9.4, we will discuss the universality of the
scheme and the underlying mathematical principles that make it possible.

4.1 Resource State

In the proposed scheme from [6], we start by preparing N qubits, where the value of N plays
a crucial role in the logical computation we will perform. The qubits are subjected to a Floquet
evolution denoted by Uy from the kicked Ising model. The operator Uy is physically equivalent to
a unitary operator composed of Clifford operators, given by:

N N
Tn = H H;S,; H CZ; i1, (45)

i=1 i=1

where H is the Hadamard gate, S = v/Z is the phase gate, and CZ; i1 is the controlled-Z gate
between qubits ¢ and ¢ + 1.
We define the resource state |¢n) as:

[on) = TR+, (46)

where we apply the unitary operator T on the state |+>®N k times. The value of k also uniquely
determines the type of logical computation that can be performed using the resource state.

4.2 Ideal Measurement and Dual Unitarity

To implement MBQC on the resource state, we measure the N qubits in the Y Z-plane (left
to right for diagram in Equation 47). Explicitly, the qubits are measured in the basis {|0%),]1%)}
determined by some angle §. For shorthand, we write s; € {0,1}, s.t. [s%) = e7¥X|s;) for
measurement of the i-th qubit. Similar to Subsection 3.1.1 for the 1D cluster state, we first
consider the case where the measurement outcome for all qubits is s; = 0. The tensor network
diagram of the circuit will then look like the left diagram below from Equation 47. Using tensor
network manipulations (S = VZ and U]{ are both diagonal matrices), we can establish logical
equivalence with the right diagram below from Equation 47. For N = 4, k = 4, the tensor network
diagram for the 1D MBQC scheme is:
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(47)
The inner product represented by the left diagram is:
(0%:0%20%5 0% |y} = (0%10%20%0% [T |4+) 7 = (07:0%0%0% T |+) 7, (48)
while the inner product represented by the right diagram is:
O U (On) - U01)[4)%* = (0" U (04) - - U (61)|+) ™, (49)

where we define the unitary operator U(f;) = Tye?%.

Our choice of N and k has a crucial impact on the computation performed in the MBQC
protocol. In the physical setup, N corresponds to the number of physical qubits, which determines
the physical space dimension. Meanwhile, k corresponds to the number of times the gate Ty is
applied, which determines the physical time dimension. However, in the logical computation, the
roles of N and k are reversed: N corresponds to the number of times the gate T}, is applied, while
k corresponds to the number of logical qubits.

We also know that the Ty (and correspondingly the T} ) gates in the tensor network diagrams
from Equation 47 can be read either from bottom to top (T in the physical time direction) or
from right to left (T} in the logical time direction) and is unitary in both cases. This interchange
is known as “dual-unitarity”. Dual-unitary proves to be a powerful tool in the analysis and design
of MBQC protocols.

4.3 Feed-Forward Measurement Control

Suppose at some index j = [, we measure s; = 1. Then, the inner products become:
(%, 1%, 0O ) = (0P U (On) - U (0) Z0- -+ - U(01)|+)% . (50)

We aim to move the Z; operator acting on the first logical qubit to the left side of all the
operators. First, we know that U;Z; = Z1U;. Then, we also know that:

T2y = (T Zi T)) Ty, (51)

and since elements of the Clifford group C, normalises elements of the Pauli group, we know that
(TkZlT,I) must be a Pauli operator (see Appendix 9.3.1 for discussion). The choice of Ty, T} to be
Clifford as important for our scheme. It allows us to reliably determine how different measurements
which affect subsequent measurements.
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In Subsection 3.1.2 where we covered the feed-forward measurement controls for the 1D cluster
state, we saw how the Z, X operators predictably changed the subsequent measurements. Since
moving the Z; (or any Pauli operator) through the Uj;, T} operators still makes the resulting
operator Pauli, different measurement outcomes will have easy to control effects for subsequent
measurements (for example, taking the negative of the measurement angle). Without this Clifford
property of T}, we will not have such fine control over different measurement outcomes.

Importantly, the Pauli operators generated from conjugation are given by the local rules:

TuZ;T} = X;,

Y1X2 'L == 1, (52)
ThX,T) =< X, YiX;1 1<i<k,

Xp1Yy 1=Kk,

up to some global phase. Using these rules, we can compute arbitrary evolution of the Pauli
matrix under conjugation by Tj. After conjugating Z; by T} to some power, these rules help us
determine whether the operator X; acts on the first qubit or not. For example, TkZlT,;r = X;.
Conjugating by T} again, we have up to some global phase:*

122, (T))" = T X\ Tf = ViXs = Z: X1 Xo. (53)
Finally, the conjugation of Z; by T,? gives:
132, (12)" = Tv 20 X, X, T
- (Tkle,j) (Tkxng) (TkXQT,I)
= (X1)(V1X2)(X1Y2X3)

= (X1)(Z1X2)(X1Z2X2X3)
= 7175 X3.
Informed by the above examples, we can numerically calculate whether the X; operator acts

on the first qubit or not for some arbitrary T}} Z; (T,fj)T by keeping track of the Pauli operators (as
was the case for the first and second powers of T}). Then, we know that:

. : T ) . T
U)T 2 (1) =T 2 (1) Uy), (55)

where U(—6;) when Tg_lZl (T,g_l) has the X; operator acting on the first qubit, while U(6;)
for the converse. This results in the expression:

O U (Ox) - U0)Zy - U (61)]+)%"

N—I+1 _
_ Rk N—1+1 +
= 0/*"TY """ 7, (Tk)

U(On) - UO)U(01-1) - U01)]+)%", 0

where we have U(6;) = U(+#6;). The sign depends on whether the Pauli operator we move over
U(0;) has the X, operator as described.

As [6] demonstrates, all possible measurement outcomes of the physical quits will turn (
to all possible eigenvectors of the o*-basis. Thus, we can realise:

(|UON) - U01)]+)%*, (57)

where |z) in any eigenvector of the k-qubit o®-basis. Interestingly, physical measurements within
the scheme are able to simultaneously evolve the logical qubits and help us probe the frequency
statistics of the logical qubits.

4We write = instead of here =, take note that we do not care about the global phases as this won’t affect our
feed-forward mechanism.
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4.4 Universality of Logical Unitary

Since the Clifford group is a finite group, we know that the Clifford T} must have some finite
order :
p}g:|Tk| — T]fk:L (58)

for which we set N = py or some multiple of p; (as we may need more periods to implement the
unitaries we desire).® The logical unitary operator we implement becomes:

Pk Pk Pk

i0p, —j+12Z i0p, —i+10k(Pr—7+1
HTkUpkfj?l»l _ HTkel pe—it121 Hez pi—i+10k (PK—3+ )’ (59)
j=1 Jj=1 Jj=1

where Og(pr —j+ 1) = (Tg)pk*jZlT,f’“_j, which is governed by rules similar to Section 4.3. We
denote the set Oy as containing elements Og(1),. .., Ok(px), which belong to the Pauli group and
are distinct from one another (since py is the order of Ty).

As [6] describes, for a small angle df and certain operators A, B € Oy, it is possible to
approximate the composite unitary:

. ) . . . 2.
edeAedeBefszAefszB ~ ez(dG) Z[A,B]7 (60)

where [A,B] = AB — BA denotes the commutator of A and B (see Appendix 9.4). We can
also view the elements Og(j) € Oy as elements of a Lie algebra Ay where A;, C su(2%). The
Lie algebra Ay is obtained by closing the set O) under commutation. We would like to find the
dimension of this Lie algebra, as we can implement any unitary in SU(2¥) of the form R = e,
where A € A. If Ay = su(2F), then we can in principle generate any element in SU(2¥). If this
is the case, our resource state could run any quantum algorithm requiring k& qubits. As [6] shows,
this is precisely the case when k = 3,6. Moreover, the researchers proved that for any given k,
there exists approximately m =~ % logical qubits where arbitrary rotations are achievable. In
other words, while rotations may not necessarily universal for arbitrary k& values, we can examine
the embedded logical qubits for which we can attain universal control.
See Appendix 9.4 for a brief discussion on Lie algebras for qubits.

5For our purposes we consider N = py,, though the calculations are the same for N = a - pj, for some a € N
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5 Generalisation of Stephen et al. (2022) to Qudits

In this report, we will build upon the work of [6] by exploring the qudit generalisation of T}.
A qudit is a d-dimensional quantum system that can be represented by d basis states. As an
example, a qubit is a two-dimensional qudit can be represented by 2 basis states, for example |0)
and [1).

In Section 5.1, we will introduce the generalisation of the Pauli Z and X operators to arbitrary
dimensions. We will also investigate the commutation relations between qudit Pauli operators in
Subsection 5.1.1. In Section 5.2, we will extend the results of the paper to qudits. Specifically, we
will describe a relationship between the Lie algebras for qudits and the generalised Pauli matrices.
This relationship will allow us to easily generalise the results obtained in the paper for qubits to
higher dimensional qudits.

5.1 Generalisation of the Z, X Operators

We can generalise the operations for qubits (d = 2) to ¥n € N,d = n. For d = 2, we know

that:
X<(1) é)z(é _01> (61)

Generalising the Pauli Z, X to arbitrary d, the Z is called the clock operator, while X is called
the shift operator. The clock operator has the form:

d—1
7 = diag (1,ei27”,-~-ei(d7;)'w) :ij|j><j|, (62)
=0

where w; = ei%i. By convention, the shift operator has the form:

00 -~ 01
10 --- 00 1
X=| 0 b 00 =51y, (63)
e i=0
00 -+~ 10
where |d) = |0). In both cases, we have the restriction that Z¢ = X¢ = |. Comparing to d = 2,

hermicity is not preserved for higher dimensions d > 3. However, these operators are always
unitary. Consequently, in contrast to the case where d = 2, the generalised Pauli matrices are not
the elements of the real Lie algebra su(3%), whose elements are traceless Hermitian matrices of
size 3% x 3F.

5.1.1 Commutation of X, 7
We know generally the commutation relation for the d-dimensional Z, X operators:
ZX =wXZ, (64)

where w = ¢'°F . Since we can write any of the Pauli matrices (on one qudit) in the form Z¢X® up to
some phase. Thus, we can show that arbitrary Pauli matrices commute. For some a, b, ¢, d mod(n),
we have:
[ZaXb, Zch] _ Zaszch _ ZchzaXb
_ (U.}_b)CZaZCXbXd _ (w_d)aZCZaXde (65)
— [(w—b)c _ (w—d)a]Za+ch+d
where we discard the coefficient if it’s non-zero. Thus, the commutator is either O or an orthogonal

Pauli matrix. This informs our algorithm for computing dim(Ay). Additionally, this concept is
easily extendable to multiple qudits, as is accounted for in the algorithm.
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5.2 Generalisation of T},

Generalisation of the Hadamard H to the d-dimensional qudit is:

1 wi=l p2@=1 . d-1)? .
1 d—2 2(d—2) (d—1)(d-2) . ks
g 1|1 w W e w = Z (wdfj) ||, (66)
\/ﬁ : . k=0
1 w w2 e wd71

2m(d—j)
Y4

. The generalisation of CZ is:

CZ = Z |i)i| ® Z°. (67)

where wg_; = e

The tensor network representation of these operators remains the same, and the generalised CZ
can be represented as the generalised H. However, for the generalisation of the S matrix, we need
to ensure the dual-unitarity of the operator Ty. To achieve this, we choose any diagonal matrix
within the qudit Clifford group as our S matrix.

For instance, when we consider the case of qutrits where d = 3, our choice of S is given by
I,7,7% diag(1,1,w;) and all permutations, and diag(1,1,ws) and all permutations. Using the
above generalisations, we can test out different choices of S. The local rules of conjugation by T}
for each choice of S is listed in Appendix 9.6.

Finally, we consider the generalised basis of measurement. Note that the Lie algebra for su(d¥),
with d > 2, is generated by the Gell-Mann matrices rather than the Pauli matrices (see Appendix
9.5). Thus, instead of measuring rotations about X, we measure the exponentiation of linear
combinations of Gell-Mann matrices. For such choices of d, we cannot easily move over the H
operator through the measurement (as done in Equation 47). Thus, we must account for this in
our measurement by measuring in the basis:

{HeH|0),...,He" " H|d — 1)}, (68)

where:

A=010s01)+ +0a-1A5(a-1), (69)

for angles ¢; corresponding to unique diagonal Gell-Mann matrices A\, (;) (from Equation 98).
In the qutrit case where d = 3, we measure in the basis:

(He0Xat020) |0y, 1012 +023) F1{1)| Fei(012a+0228) F9) ), (70)

given diagonal Gell-Mann matrices Az, A\g for d = 3 from Equation 95.

5.2.1 Correspondence Between the Minimal Lie Algebra and Pauli Matrices

The Gell-Mann matrices form a basis over the vector space of traceless Hermitian matrices,
which also spans the Lie algebra of su(d*) (see Appendix 9.5). More precisely, these vectors are
real, in the sense that the coefficients allowed in a linear superposition are real numbers. To find
the minimal Lie subalgebra dim(.Ay) for qudits obtainable from our MBQC scheme, we repeatedly
apply the Lie bracket on Og(j) € Ok and find the set of linearly independent elements that are
eventually closed under the lie bracket; Ay is then the (real) linear span of this set. As mentioned
before, if Ay, is found to be equal to dim su(d*) for a d-dimensional qudit, then we will be able to
generate any unitary operator in SU(d*) using the MBQC protocol.

Although the aforementioned method for determining A is conceptually straightforward, it
suffers from computational inefficiency. The primary reason for this issue is that, after commu-
tating two elements Og(j), Ok (1), we must implement the Gram-Schmidt process to determine
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the linearly-independent matrix relative to all previously discovered generators. This procedure
rapidly grows in complexity with increasing values of d and k.

To overcome this challenge, we can employ the use of generalised Pauli matrices, which although
not Hermitian in general, offer a straightforward commutation relation. By complexifying the real
Lie algebra of interest, we can transform it into a complex Lie algebra with complex coefficients.
In this complex Lie algebra, the generalized Pauli matrices form a basis, enabling us to obtain the
minimal complex Lie algebra By by closing any complex linear combination of O(j) and Og(1)
under commutation.

Interestingly, the dimension of the minimal real Lie subalgebra Ay, obtained by closing O(5)
and Og(l) under commutation, is the same as the dimension of By considered over the complex
field.% In other words, we can express this as:

dimR(Ak) = dimc(Bk). (71)

Moreover, we can generate other complex linear combinations of Oy(j) and O (l), such as
Ok (j) + Or(1) and O (j) — Ok(l), to obtain By.

In our case, we know that the clock operator Z is a complex linear combination of the Gell-
Mann matrices (for qutrits):

1 1 2
7 = 7 (V3Xs = 3X3) + Sisin g(\/@s = A3) (72)

and similarly for Z2, implying that A3, \g are themselves complex linear combinations of Z, Z2.
We then notice that Og(j)’s are formed by conjugating A3, Ag with multiple applications of Tjs;
this means in the complexified version we can consider Z, Z2? with T},. The key insight to be made
in the latter is that T} is a Clifford operation, such that T ZT* T?Z?T' is again a generalised
Pauli string, whose commutation relations with other Pauli strings are simple to compute.

Thus, to find By, we have a computationally efficient algorithm utilizing the Pauli group
structure. We employ this algorithm in the next section, determining By, which in turn allows us
to determine dim(.Ay).

6See https://math.stackexchange.com/questions/4669307/minimal-1lie-subalgebra-generated
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6 Algorithm for Finding dim(.A4;)

We aim to find the size of the set By, which is the set of matrices determined by closing the
set O, under commutation.” To achieve this, we first input a set of orthonormal Pauli matrices
Oy belonging to the generalised Pauli group.

For our algorithm, we do not consider the explicit matrix representation of the Pauli matrices.
Since Pauli matrices can be represented in terms of:

2y Zip XY X (73)

up to some global phase for some i1, ...4pn,Ji,...,4n € {0,...,n — 1}. Thus, a list representation
of the i and jj indices is isomorphic to the matrix representation of the Pauli matrices (up to
some global phase) (see Appendix 9.3.2). For example, Z; X5 for two qubits can be represented as
((1,0),(0,1)), where the left array corresponds to the upper indices for the Z matrix at each qudit,
and the right array corresponds to the upper indices for the X matrix. This form (compared to
the matrix representation) will greatly decrease the computation time, and is easily generalisable.

We then use the commutation laws described in Subsection 5.1.1 to compute whether commu-
tation will create a new Pauli matrix. Commutation will create a non-zero matrix if the sum of
—bc + da (notation from Subsection 5.1.1) for all qudits, after then taking (modn), is non-zero.
We check if the newly created Pauli matrix is already contained in the set of matrices.

The below pseudocode is an implementation of an algorithm which finds dim(By) (equivalently,
dim(Ag)) given O:

ortho = O
new_ortho = empty list
size = number of qudits
dim = d
loop = True
While (loop == True)
for M; in ortho
for Ms in ortho
M. = null list containing two lists of length size
coefficient = 0
for i from 0 to dim-1
= upper index of Z for qudit i in M
= upper index of X for qudit i in M,
= upper index of Z for qudit i in M,
upper index of X for qudit i in M,
upper index of Z for qudit i in M, = a+ ¢ (moddim)
upper index of X for qudit i in M. = b+d (moddim)
Add —bc+ ad to coefficient
If (coefficient (moddim) = 0) is not true
if (M. in ortho or new_ortho) is not true
Add M. to new_ortho
if new_ortho is empty
loop = False
ortho = ortho + new_ortho
new_ortho = empty list
dim(Ag) = size of ortho

QU O o e

7"We have chosen the diagonal Pauli matrices rather than the Gell-Mann matrices based on the idea of complex-
ification
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6.1 Algorithm Efficiency

In order to improve the efficiency of our algorithm, we can reduce the size of the commutator
set at each iteration. After adding a new orthonormal matrix to the set, we only need to iterate
through the commutators of this new matrix with the whole set of orthonormal matrices, since we
have already iterated through the commutators of the previous matrices in the set.

Moreover, to further optimise the algorithm, we can choose to commute only a subset of the
newly obtained matrices from the commutator set new_ortho. Instead of iterating through all
the newly obtained matrices, which could be hundreds or even thousands, we can select a smaller
subset, such as the first 10 matrices. This significantly reduces computation time while still giving
us a lower bound for the dimension of Aj.

6.2 Implementation for d = 2

We extend the results from [6] using our algorithm, from k& = 7 to k = 8,9: We also record
the time taken to attain the dim(Ay) results for different & values. We choose only 10 new Pauli
matrices from new_ortho to commute with the elements in ortho.

k 7 8 9
dim (Oy) | 24 28 60
dim (A) | 8256 32896 262143
time(s) | 4 15 146

For the choice k = 9, we know that dim (Ax) = su(2*), so we can implement any quantum
algorithm for 9 logical qubits.

6.3 Implementation for d =3

Based on Section 5.2, we can determine Oy for choices of k. Measurement of physical qubits
is in the basis {e7"X1|s)}. First, we take S = I, Z, Z? and show the values from k = 3 to k = 7.
Note that the times can be improved with different choices of the number of new matrices to
commute.

k 3 4 5 6 7
dim (O) | 16 20 24 28 32
dim (Ag) | 728 6560 59048 531440 4782968

time(s) | <1 1 19 180 2740

where for all given k, dim (A;) = dimsu(3*) = 9% — 1. Note that the computation time scales
exponentially with k as su(3¥) = 9% — 1 scales exponentially with k.
For S = diag(1,1,w;) and diag(1,1,ws), we have (without the time to compute):

k 3 4 5 6 7
dim (O) | 60 80 72 728 480
dim (Ag) | 728 6560 59048 531440 4782968

Under preliminary testing, it seems that choice of S does not affect dim (Ag). However, the
choice of S affects py, which in turn may change how we decompose our desired logical unitary.
Depending on the unitary we want to generate, different choices of S may affect the number of
qudits N required.

In addition, given period pj for the generalised Ty, our values of dim (Oy) are actually:

dim (Ok) = 2pk. (74)

This is because we have access to the following exponents of Gell-Mann matrices:

. . pe—1 ) ) pe—1
Op = [, Tl ™ Ty, (T e ™omp = s Ty, (T]) ePerpety,
(75)

24



Universal Resource States for 1D Measurement-Based Quantum Computation Jeb Song

For our algorithm, we consider the equivalent complexified Gell-Mann matrices, which gives
us the following Pauli matrices:

Pr—

_ t )P pr—1 52 ot 2 i R ——
Or = {2, T{ 2\ Ty, ..., (T} 2T 22 T 22T, L (T Z2TPy(76)

where it is easily shown that dim (Oy) = 2p.
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7 Conclusion

We have discovered a new family of universal one-dimensional resource states in systems with
higher local dimensions (qudits). These resource states possess two crucial properties. Firstly, the
entangling operators used to generate the state are dual-unitary, establishing a correspondence
between the physical and logical operators. Secondly, the operator is Clifford, which means that
measurement errors propagate controllably, and can be corrected in an efficient manner classically.

Interestingly, there are many equivalent resource states for systems beyond qubits (choices of
S), and each state has a different period (or clock cycle length) pi. This period sets the clock
cycle of the evolution and determines the number of physical resources required to perform one
basic unitary e’9+U) where Oy, (j) € Ok. A smaller clock cycle is advantageous, as it reduces the
number of physical resources required. However, the clock cycle limits the cardinality of O, the
number of such Og(j) accessible under evolution. It may be necessary to perform many cycles to
accurately reach an element A € Ay, the Lie algebra formed by closing Oy under the Lie braket.
Therefore, there is a trade-off between the resources required for implementing basic unitaries and
those required for implementing the target unitarity from these building blocks.

Additionally, we utilised the complexification of the Lie algebra to establish a relationship
between the Lie algebra and Gell-Mann matrices. This helps us reduce the computational overhead
required to calculate Ay, for higher dimensions.

In subsequent research, identifying algorithms capable of decomposing desired unitaries to
choices of measurement within the MBQC scheme described would be an intriguing avenue for
investigation. Furthermore, exploring the efficiency of various resource states concerning the
number of necessary physical qudits could prove valuable. Such an investigation may illuminate
the practicality of implementing these resource states in experimental quantum systems.
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9 Appendix

9.1 Tensor Network Manipulations for Teleportation

(77)
becomes:
< z>
HH—{z7 > (78)
X4z]—
Using Equation 13, the above diagram becomes:

7 (79)

XHzi—
Z'XHZPHZ' = ' XX HHZ' = 7' X X0 7' = 20 7" =1, (80)

where: 4 '
i,je{0,1} = 2% X¥ =1, (81)

such that the operations will simplify to I. Thus, the final form of the tensor network looks like:

(82)

as desired.
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9.2 Tensor Network Manipulations for 1D Cluster State

We have:
A
/A A\
(83)
Zz%
H] H] H] H]

Since Z commutes with U, and both Z, U; are diagonal matrices, the above diagram is equiv-

alent to:
AN AN

Djzl (84)
[H] H

where we used Equation 13 to remove the |+) state. Additionally, we move the Z operator through
the H operator to get X.

To move the X operator to the third and fourth qubit, we use the identity from Equation 15.
This gives us the diagram:

(85)
which simplifies to:
(86)

/O\

HHUHEH [H] [H]

where U = e~ 02/2)Z and we move the X operator over the H. Finally, we can absorb the Z
into Us to get Uj = e03/247/2)Z which gives us the desired diagram.
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9.3 Pauli Group and Clifford Group for Qudits
9.3.1 Pauli Group and Clifford Group for Qubits

For n qubits, the Pauli group is given by:
P, = {eiew/20j1 ®...®0’J—n}’ (87)
where 6 € {0,1,2,3} and j1,...,j, € {0,1,2,3}. Additionally, we know that:
00,01,02,03 = |,0%,0Y,0%. (88)

Informally, the Pauli group is the set of tensor products of n operators, which are either the
single-qubit Pauli operators (X,Y, Z) or single-qubit identity. The whole operator is multiplied
by the fourth roots of unitary.

For n qubits, the Clifford group is:

C,={Uesu@"):UP,U € P,}, (89)

where SU(2") is the special unitary group of 2™ x 2" unitary matrices. Thus, elements of the Pauli
group under conjugation of elements of the Clifford group will still belong to the Pauli group. We
know that the Hadamard operator H, phase operator S = v/Z, and the Controlled-Z gate CZ
together are the generators of the Clifford group.

See https://en.wikipedia.org/wiki/Clifford_gates

9.3.2 Generalisation to Qudits

The generalisations of the Pauli operators and Clifford operators are given in Section 5.1 and
Section 5.2.
Given d > 2, for n qudits, we can choose the d-dimensional Pauli group as:

P = {2z xpr ozl xl ) (90)

where 0 € {0,1,...,n—1} and j1,...,jn,k1,...,k, €4{0,...,n — 1}. Note that the global phase
are just the powers of w. Though there are multiple ways to generalise the Pauli operators, our
choice of the Pauli group comes from generalising the Z, X operators (as the other single qudit
Pauli operators can be expressed as multiples of Z, X up to some phase).

For n qudits, the Clifford group becomes:

C, ={U eSu(d"):UP,U" € P,}. (91)
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9.4 Lie Algebra for Qubits

In quantum mechanics, Lie algebras and Lie groups are important mathematical structures
which characterise the time evolution of a quantum state. The set of unitary operators that act
on a quantum system constitutes a Lie group (special unitary group SU(2) for the single qubit
case), which are generated by a set of operators in a Lie algebra (su(2), the Pauli matrices).
Explicitly, U = e~ *#* is an element of a Lie group, where H is an element of a Lie algebra. Lie
groups exhibit closure under multiplication, while Lie algebras exhibit closure under commutation.
Using the Baker-Campbell-Hausdorff formula, we know that:

VA, B € su(2), etel = eAtBH3ABI+. (92)

Using this formula, we can relate multiplications of the Lie group with commutations in the
Lie algebras.
Importantly, we know that:

oi0A ;i B ,—i0A ,—i$B _ ,i0A+i¢B—L0$[A,B]+... ,~i0A—i¢B—L06[A,Bl+... _ 69¢[A,B]+---7 (93)

where A, B commute such that [A, B] = 0 or [A, B] forms an orthogonal element in the Lie algebra.
Thus, if we have full control in measuring angles 6, ¢ about the Lie algebras A, B, we also have
control over the angle & = 0¢ about the Lie algebra [A, B].

As we briefly mentioned in Section 3.1.1, for one qubit, the Euler decomposition can generate
arbitrary elements of the Lie group. Here, the Pauli Z, X are the generators of the Lie algebra.

To generate the Lie algebras for the for k£ qubits, we consider the Tensor product of single
qubit Paulis and identities (minus the k-qubit identity). Thus, the number of generators of the
Lie algebra becomes:

dim su(2%) = 4% — 1. (94)

See https://quantumcomputing.stackexchange.com/questions/31791/1link-between-q
uantum-computing-and-lie-theory
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9.5 Lie Algebra for Qutrits and Qudits

For su(3), the generators of the Lie algebra are the Gell-Mann matrices:

01 0 0 1 0 0 00 1

M= 100 |\ 0 =0 -1 0|, =000

000 0 0 0 1 0 0

0 0 00 0 00 0 L {10 0
XM=]0 0 001 |, =00 —i]|, = 01 o0 |,

i 0 010 0 i 0 V3o 0o -2

(95)
and since the Gell-Mann matrices are not Pauli, the Gell-Mann matrices are not normalised by
Ty.

According to https://mathworld.wolfram.com/GeneralizedGell-MannMatrix.html, for
the generalisations of the Gell-Mann matrices su(d), denote E; i as the d x d matrix with 1 at the

j, k-th entry, and 0 elsewhere. The Gell-Mann matrices can a collection of three types of matrices.
The first are the real symmetric matrices:

Ejyk + Ekyj, (96)

ranging over the index j,k where 1 < j <k <d. .
The second are the imaginary antisymmetric matrices:

—i(Ejk + Ek,j), (97)

ranging over the index j, k where 1 < j < k < d.
The third are the diagonal real matrices:

k—|—1 Z 5.5~ kEk+1k41 | (98)

ranging over k where 1 <k <d-—1
In general, the cardinality of the Lie algebra corresponding to k£ d-dimensional qudits is:

su(d®) = d** — 1. (99)
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9.6 Choice of Qutrit S and Evolution

We measure the physical qubits in the basis {e~%1|s)}. Choice of S = diag(1,1,w;) and
permutations will generate:

TW X, T = 72,
ThZiT) = 22\ 22X, 72, 1<i<k,
72 72X, i=k
Choice of S = diag(1, 1,ws) and permutations will generate:
T X, T = 72,
ThZ T} = 72\ Z:X, 22, 1<i<Fk,
72 71Xy, i=k.
Choice of S = I, Z, Z? will generate:
T X, T} = 72,
ThZiT) = 72\ XiZ%, 1<i<k,
Z: Xy i=k.

33



	Introduction
	What is Quantum Computation?
	Measurement-Based Quantum Computation

	Tensor Network Notation
	Basics of Tensor Network Notation
	Bell Pair in Tensor Network Notation
	Quantum Gates in Tensor Network Notation

	Example: Quantum Teleportation

	MBQC
	1D Cluster State
	Ideal Measurement
	Feed-Forward Control of 1D Cluster State

	2D Cluster State
	z-measurement
	x-measurement


	Universal MBQC paper by Stephen et al. (2022)
	Resource State
	Ideal Measurement and Dual Unitarity
	Feed-Forward Measurement Control
	Universality of Logical Unitary

	Generalisation of Stephen et al. (2022) to Qudits
	Generalisation of the Z, X Operators
	Commutation of X, Z

	Generalisation of Tk
	Correspondence Between the Minimal Lie Algebra and Pauli Matrices


	Algorithm for Finding dim(Ak)
	Algorithm Efficiency
	Implementation for d=2
	Implementation for d=3

	Conclusion
	References
	Appendix
	Tensor Network Manipulations for Teleportation
	Tensor Network Manipulations for 1D Cluster State
	Pauli Group and Clifford Group for Qudits
	Pauli Group and Clifford Group for Qubits
	Generalisation to Qudits

	Lie Algebra for Qubits
	Lie Algebra for Qutrits and Qudits
	Choice of Qutrit S and Evolution


